To cite ChIP-Atlas in your publication:

Publications citing ChIP-Atlas:

  1. F. Mao et al., EpiDenovo: a platform for linking regulatory de novo mutations to developmental epigenetics and diseases. Nucleic Acids Res.. 46, D92–D99 (2018), Link.
  2. T. Chishima, J. Iwakiri, M. Hamada, Identification of Transposable Elements Contributing to Tissue-Specific Expression of Long Non-Coding RNAs. Genes (Basel).. 9, 23 (2018), Link.
  3. Y. Nishizawa et al., Oncogene c-Myc promotes epitranscriptome m6A reader YTHDF1 expression in colorectal cancer. Oncotarget. 9 (2018), Link.
  4. A. Naderi, C1orf64 is a novel androgen receptor target gene and coregulator that interacts with 14-3-3 protein in breast cancer. Oncotarget. 8, 57907–57933 (2017), Link.
  5. K. Matsuda et al., ChIP-seq analysis of genomic binding regions of five major transcription factors highlights a central role for ZIC2 in the mouse epiblast stem cell gene regulatory network. Development. 144, 1948–1958 (2017), Link.
  6. M. H. Guo et al., Comprehensive population-based genome sequencing provides insight into hematopoietic regulatory mechanisms. Proc. Natl. Acad. Sci.. 114, E327–E336 (2017), Link.
  7. T. Umeyama, T. Ito, DMS-Seq for In Vivo Genome-wide Mapping of Protein-DNA Interactions and Nucleosome Centers. Cell Rep.. 21, 289–300 (2017), Link.
  8. T. Sanosaka et al., DNA Methylome Analysis Identifies Transcription Factor-Based Epigenomic Signatures of Multilineage Competence in Neural Stem/Progenitor Cells. Cell Rep.. 20, 2992–3003 (2017), Link.
  9. K. Tanegashima et al., Epigenetic regulation of the glucose transporter gene Slc2a1 by β-hydroxybutyrate underlies preferential glucose supply to the brain of fasted mice. Genes to Cells. 22, 71–83 (2017), Link.
  10. I. Yevshin, R. Sharipov, T. Valeev, A. Kel, F. Kolpakov, GTRD: A database of transcription factor binding sites identified by ChIP-seq experiments. Nucleic Acids Res.. 45, D61–D67 (2017), Link.
  11. M. Yoshihara et al., Hotspots of De Novo Point Mutations in Induced Pluripotent Stem Cells. Cell Rep.. 21, 308–315 (2017), Link.
  12. F. K. Turrell et al., Lung tumors with distinct p53 mutations respond similarly to p53 targeted therapy but exhibit genotype-specific statin sensitivity. Genes Dev.. 31, 1339–1353 (2017), Link.
  13. R. Dréos, G. Ambrosini, R. Groux, R. C. Périer, P. Bucher, MGA repository: a curated data resource for ChIP-seq and other genome annotated data. Nucleic Acids Res., 1–6 (2017), Link.
  14. Y. Onodera et al., miR-155 induces ROS generation through downregulation of antioxidation-related genes in mesenchymal stem cells. Aging Cell. 16, 1369–1380 (2017), Link.
  15. K. Ishigaki et al., Polygenic burdens on cell-specific pathways underlie the risk of rheumatoid arthritis. Nat. Genet.. 49, 1120–1125 (2017), Link.
  16. T. Kehl et al., RegulatorTrail: A web service for the identification of key transcriptional regulators. Nucleic Acids Res.. 45, W146–W153 (2017), Link.
  17. J. Chèneby, M. Gheorghe, M. Artufel, A. Mathelier, B. Ballester, ReMap 2018: an updated atlas of regulatory regions from an integrative analysis of DNA-binding ChIP-seq experiments. Nucleic Acids Res., 1–9 (2017), Link.
  18. Y. Chen, M. Widschwendter, A. E. Teschendorff, Systems-epigenomics inference of transcription factor activity implicates aryl-hydrocarbon-receptor inactivation as a key event in lung cancer development. Genome Biol.. 18, 236 (2017), Link.
  19. O. Govaere et al., The PDGFRα-laminin B1-keratin 19 cascade drives tumor progression at the invasive front of human hepatocellular carcinoma. Oncogene (2017), Link.
  20. N. Sugeno et al., α-Synuclein enhances histone H3 lysine-9 dimethylation and H3K9me2-dependent transcriptional responses. Sci. Rep.. 6, 36328 (2016), Link.