To cite ChIP-Atlas in your publication:

Publications citing ChIP-Atlas:

  1. A. Tano et al., J. Cell Sci., in press, Link.
  2. S. Sofiadis et al., HMGB1 as a rheostat of chromatin topology and RNA homeostasis on the path to senescence. bioRxiv Genomics, 540146 (2019), Link.
  3. W. J. Verdenius, The Genetic Basis of Transcriptional and Spatial Heterogeneity of Squamous Features in Pancreatic Ductal Adenocarcinoma. bioRxiv, 548354 (2019), Link.
  4. Z. Tong, Q. Cui, J. Wang, Y. Zhou, TransmiR v2.0: an updated transcription factor-microRNA regulation database. Nucleic Acids Res. 47, D253–D258 (2019), Link.
  5. Y. Ishijima et al., The Gata2 repression during 3T3-L1 preadipocyte differentiation is dependent on a rapid decrease in histone acetylation in response to glucocorticoid receptor activation. Mol. Cell. Endocrinol. 483, 39–49 (2019), Link.
  6. K. Yoshizaki et al., Paternal age affects offspring’s behavior possibly via an epigenetic mechanism recruiting a transcriptional repressor REST. bioRxiv, 550095 (2019), Link.
  7. S. Chandrashekharappa et al., Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat. Commun. 10, 89 (2019), Link.
  8. T. Yamada, N. Akimitsu, Contributions of regulated transcription and mRNA decay to the dynamics of gene expression. Wiley Interdiscip. Rev. RNA. 10, e1508 (2019), Link.
  9. B. Oulès et al., EMBO J., in press, Link.
  10. Y. Murayama et al., Glucocorticoid receptor suppresses gene expression of Rev-erbα (Nr1d1) through interaction with the CLOCK complex. FEBS Lett. (2019), Link.
  11. T. Kehl et al., The role of TCF3 as potential master regulator in blastemal Wilms tumors. Int. J. Cancer. 144, 1432–1443 (2019), Link.
  12. M. Ranjit et al., Aberrant Active cis-Regulatory Elements Associated with Downregulation of RET Finger Protein Overcome Chemoresistance in Glioblastoma. Cell Rep. 26, 2274–2281.e5 (2019), Link.
  13. C. Tanikawa et al., A polymorphic variant in p19Arf confers resistance to chemically-induced skin tumors by activating the p53 pathway. J. Invest. Dermatol. (2019), Link.
  14. M. Lizio et al., Update of the FANTOM web resource: expansion to provide additional transcriptome atlases. Nucleic Acids Res. 47, D752–D758 (2019), Link.
  15. J. B. Studd et al., Genetic predisposition to B-cell acute lymphoblastic leukemia at 14q11.2 is mediated by a CEBPE promoter polymorphism. Leukemia. 33, 1–14 (2019), Link.
  16. F. Miura et al., Pioneer Factor NeuroD1 Rearranges Transcriptional and Epigenetic Profiles to Execute Microglia-Neuron Conversion. Neuron (2019), Link.
  17. I. Yevshin, R. Sharipov, S. Kolmykov, Y. Kondrakhin, F. Kolpakov, GTRD: a database on gene transcription regulation-2019 update. Nucleic Acids Res. 47, D100–D105 (2019), Link.
  18. Ö. Åkerborg et al., High-resolution Regulatory Maps Connect Vascular Risk Variants to Disease Related Pathways. Circ. Genomic Precis. Med. (2019), Link.
  19. S. Banerjee et al., Identifying Transcriptional Regulatory Modules Among Different Chromatin States in Mouse Neural Stem Cells. Front. Genet. 9, 731 (2019), Link.
  20. P. Fiziev, J. Ernst, ChromTime: Modeling spatio-temporal dynamics of chromatin marks. Genome Biol. 19, 109 (2018), Link.
  21. Y. Egashira, Y. Mori, Y. Yanagawa, S. Takamori, Development of lentiviral vectors for efficient glutamatergic-selective gene expression in cultured hippocampal neurons. Sci. Rep. 8, 15156 (2018), Link.
  22. I. Miura et al., DNA methylation of ANKK1 and response to aripiprazole in patients with acute schizophrenia: A preliminary study. J. Psychiatr. Res. 100, 84–87 (2018), Link.
  23. H. Kitano et al., Sequence homology in eukaryotes (SHOE): interactive visual tool for promoter analysis. BMC Genomics. 19, 715 (2018), Link.
  24. H. Kawaji, dirHub: a trackHub configurator with directory structure projection. bioRxiv, 314807 (2018), Link.
  25. Y. Onodera et al., Inflammation-associated MIR-155 activates differentiation of muscular satellite cells. PLoS One. 13, e0204860 (2018), Link.
  26. K. Khetchoumian et al., Cell-autonomous transcriptional mechanism for enhancement of translation capacity in secretory cells. bioRxiv, 454421 (2018), Link.
  27. T. Soga et al., GLUT6 is a lysosomal transporter that is regulated by inflammatory stimuli and modulates glycolysis in macrophages. FEBS Lett. 593, 195–208 (2018), Link.
  28. S. Chatterjee et al., Pre-operative progesterone benefits operable breast cancer patients by modulating surgical stress. Breast Cancer Res. Treat. 170, 431–438 (2018), Link.
  29. H.-P. Lenhof et al., REGGAE: a novel approach for the identification of key transcriptional regulators. Bioinformatics. 34, 3503–3510 (2018), Link.
  30. S. Cagnin et al., The Prion Protein Regulates Synaptic Transmission by Controlling the Expression of Proteins Key to Synaptic Vesicle Recycling and Exocytosis. Mol. Neurobiol. (2018), Link.
  31. C. A. Lareau et al., Interrogation of human hematopoiesis at single-cell and single-variant resolution. bioRxiv (2018), Link.
  32. T. Sekinaka et al., SETDB1 is essential for mouse primordial germ cell fate determination by ensuring BMP signaling. Development. 145, dev164160 (2018), Link.
  33. C. A. Lareau et al., Interrogation of human hematopoiesis at single-cell and single-variant resolution. bioRxiv, 255224 (2018), Link.
  34. M. Kikuchi et al., Enhancer variants associated with Alzheimer’s disease affect gene expression via chromatin looping. bioRxiv, 426312 (2018), Link.
  35. C. Cui et al., Identification and Analysis of Human Sex-biased MicroRNAs. Genomics, Proteomics Bioinforma. 16, 200–211 (2018), Link.
  36. K. Kohrogi et al., LSD1 mediates metabolic reprogramming by glucocorticoids during myogenic differentiation. Nucleic Acids Res. 46, 5441–5454 (2018), Link.
  37. T. Chishima, J. Iwakiri, M. Hamada, Identification of transposable elements contributing to tissue-specific expression of long non-coding RNAs. Genes (Basel). 9, 23 (2018), Link.
  38. S. Baldi et al., Genome-wide Rules of Nucleosome Phasing in Drosophila. Mol. Cell. 72, 661–672.e4 (2018), Link.
  39. S. Ochsner et al., The Signaling Pathways Project: an integrated ’omics knowledgebase for mammalian cellular signaling pathways. bioRxiv, 401729 (2018), Link.
  40. S. Rodriguez-Cuevas et al., Loss of function of miR-342-3p results in MCT1 over-expression and contributes to oncogenic metabolic reprogramming in triple negative breast cancer. Sci. Rep. 8, 12252 (2018), Link.
  41. K. Pietras et al., Activin receptor-like kinase 1 is associated with immune cell infiltration and regulates CLEC14A transcription in cancer. Angiogenesis. 22, 117–131 (2018), Link.
  42. A. Misawa, H. Orimo, lncRNA HOTAIR Inhibits Mineralization in Osteoblastic Osteosarcoma Cells by Epigenetically Repressing ALPL. Calcif. Tissue Int. 103, 422–430 (2018), Link.
  43. R. Dréos, G. Ambrosini, R. Groux, R. C. Périer, P. Bucher, MGA repository: A curated data resource for ChIP-seq and other genome annotated data. Nucleic Acids Res. 46, D175–D180 (2018), Link.
  44. E. Ferris, L. M. Abegglen, J. D. Schiffman, C. Gregg, Accelerated Evolution in Distinctive Species Reveals Candidate Elements for Clinically Relevant Traits, Including Mutation and Cancer Resistance. Cell Rep. 22, 2742–2755 (2018), Link.
  45. S. Uda et al., Trans-omic Analysis Reveals Selective Responses to Induced and Basal Insulin across Signaling, Transcriptional, and Metabolic Networks. iScience. 7, 212–229 (2018), Link.
  46. L. M. Raffield et al., Common α-globin variants modify hematologic and other clinical phenotypes in sickle cell trait and disease. PLoS Genet. 14, e1007293 (2018), Link.
  47. Y. Chen et al., PHLDA1, another PHLDA family protein that inhibits Akt. Cancer Sci. 109, 3532–3542 (2018), Link.
  48. R. Mourad, K. Ginalski, G. Legube, O. Cuvier, Predicting double-strand DNA breaks using epigenome marks or DNA at kilobase resolution. Genome Biol. 19, 1–15 (2018), Link.
  49. H. Wang et al., Myc and ChREBP transcription factors cooperatively regulate normal and neoplastic hepatocyte proliferation in mice. J. Biol. Chem. 293, 14740–14757 (2018), Link.
  50. H. Imrichova, S. Aerts, ChIP-seq meta-analysis yields high quality training sets for enhancer classification. bioRxiv, 388934 (2018), Link.
  51. A. Swoboda et al., STAT3 promotes melanoma metastasis by CEBP-induced repression of the MITF pigmentation pathway. bioRxiv, 422832 (2018), Link.
  52. B. Ballester, A. Mathelier, M. Artufel, J. Chèneby, M. Gheorghe, ReMap 2018: an updated atlas of regulatory regions from an integrative analysis of DNA-binding ChIP-seq experiments. Nucleic Acids Res. 46, D267–D275 (2017), Link.
  53. Y. Hayashizaki et al., Hotspots of De Novo Point Mutations in Induced Pluripotent Stem Cells. Cell Rep. 21, 308–315 (2017), Link.
  54. S. Aerts et al., Identification of cis-regulatory mutations generating de novo edges in personalized cancer gene regulatory networks. Genome Med. 9, 80 (2017), Link.
  55. O. Govaere et al., The PDGFRα-laminin B1-keratin 19 cascade drives tumor progression at the invasive front of human hepatocellular carcinoma. Oncogene. 36, 6605–6616 (2017), Link.
  56. A. Naderi, C1orf64 is a novel androgen receptor target gene and coregulator that interacts with 14-3-3 protein in breast cancer. Oncotarget. 8, 57907–57933 (2017), Link.
  57. K. Matsuda et al., ChIP-seq analysis of genomic binding regions of five major transcription factors highlights a central role for ZIC2 in the mouse epiblast stem cell gene regulatory network. Development. 144, 1948–1958 (2017), Link.
  58. K. Ishigaki et al., Polygenic burdens on cell-specific pathways underlie the risk of rheumatoid arthritis. Nat. Genet. 49, 1120–1125 (2017), Link.
  59. K. Fukuda et al., miR-155 induces ROS generation through downregulation of antioxidation-related genes in mesenchymal stem cells. Aging Cell. 16, 1369–1380 (2017), Link.
  60. T. Kudo et al., Oncogene c-Myc promotes epitranscriptome m6A reader YTHDF1 expression in colorectal cancer. Oncotarget. 9 (2017), Link.
  61. F. K. Turrell et al., Lung tumors with distinct p53 mutations respond similarly to p53 targeted therapy but exhibit genotype-specific statin sensitivity. Genes Dev. 31, 1339–1353 (2017), Link.
  62. T. Kehl et al., RegulatorTrail: A web service for the identification of key transcriptional regulators. Nucleic Acids Res. 45, W146–W153 (2017), Link.
  63. T. Imamura et al., DNA Methylome Analysis Identifies Transcription Factor-Based Epigenomic Signatures of Multilineage Competence in Neural Stem/Progenitor Cells. Cell Rep. 20, 2992–3003 (2017), Link.
  64. Q. Liu et al., EpiDenovo: a platform for linking regulatory de novo mutations to developmental epigenetics and diseases. Nucleic Acids Res. 46, D92–D99 (2017), Link.
  65. I. Yevshin, R. Sharipov, T. Valeev, A. Kel, F. Kolpakov, GTRD: A database of transcription factor binding sites identified by ChIP-seq experiments. Nucleic Acids Res. 45, D61–D67 (2017), Link.
  66. Y. Chen, M. Widschwendter, A. E. Teschendorff, Systems-epigenomics inference of transcription factor activity implicates aryl-hydrocarbon-receptor inactivation as a key event in lung cancer development. Genome Biol. 18, 236 (2017), Link.
  67. T. Umeyama, T. Ito, DMS-Seq for In Vivo Genome-wide Mapping of Protein-DNA Interactions and Nucleosome Centers. Cell Rep. 21, 289–300 (2017), Link.
  68. R. Chiarle et al., Comprehensive population-based genome sequencing provides insight into hematopoietic regulatory mechanisms. Proc. Natl. Acad. Sci. 114, E327–E336 (2016), Link.
  69. N. Sugeno et al., α-Synuclein enhances histone H3 lysine-9 dimethylation and H3K9me2-dependent transcriptional responses. Sci. Rep. 6, 36328 (2016), Link.
  70. T. Aigaki et al., Epigenetic regulation of the glucose transporter gene Slc2a1 by β-hydroxybutyrate underlies preferential glucose supply to the brain of fasted mice . Genes to Cells. 22, 71–83 (2016), Link.